The Vetronics Institute

a Collaborative Research Initiative
Sponsored by the

U.S. Army Vetronics Technology Center

Introduction

The **Vetronics Concept:** The <u>discipline</u> for <u>total</u> electrical/electronics <u>system</u>

integration.

The **Vetronics Institute** (VI) was Established in May 2000

- □ As an initiative of the **U.S. Army Vetronics Technology Center** (VTC) to support organizational research activities
- □ The Goal of the VI is to provide a mechanism to coordinate relevant research activities between the VTC and Universities in Southeastern Michigan.

Objectives

The **Objectives** of the **VI** are to:

- (i) acquire and disperse knowledge of relevant research in Vetronics technology,
- (ii) facilitate the identification of organizational research objectives,
- (iii) identify possible collaborative research opportunities,
- (iv) contribute to fostering good relationships and cooperation among the local scientific and technological community.

Current Year Activities

(1) Conducted 1st VI Workshop Series:

- ➤ Provide VTC Personnel with Visibility Into Current Research Activities
- > Establish Relationships with Academic Community

(2) Identified and Initiated Collaborative Research Activities

- (i) Embedded Simulation
- (ii) Fault Tolerance in Real-Time Networks
- (iii) Intelligent Control Systems

(3) Drafted Vetronics Research Plan

- ➤ Identify Relevant Research Domains
- ➤ Define Annual Research Objectives

Summary of 1st VI Workshop Series

(i) Embedded Networks in Vehicle Systems: Presented an overview of networks in vehicles followed by a description of real-time issues and fault tolerance.

Presenter: Dr. Paul Richardson, University of Michigan-Dearborn

(ii) Reconfigurable Computing: Presented the foundations of reconfigurable computing and how to architect reconfigurable systems.

Presenter: Dr. Ali Elkateeb, University of Michigan-Dearborn

(iii) Simulations in Embedded Platforms: This workshop presented an overview of embedded simulations and described several significant obstacles.

Presenter: Dr. Yi Lu Murphey, University of Michigan Dearborn

(iv) Robust Controls In Robotic Systems: Describe issues related to the H-infinity formulation, control design with tight performance specifications and parameterization of control systems.

Presenters: Dr. Ka C. Cheok, Oakland University and Dr. N. Narasimhamurthi, University of Michigan Dearborn

Summary of Collaborative Research

(i) Issues for Real-Time Networks in Vehicle Systems

- Guarantee All Message Time Constraint at High Bandwidth Utilization
- Explore Methods To Reduce System Development and Maintenance Costs
- Develop Effective Means to Detect and Respond To Transient Network Faults

Collaborators: Larry Sieh, Rakesh Patel, U.S. Army TARDEC; Paul Richardson, University of Michigan-Dearborn

(ii) Intelligent Control Systems

- Investigate Intelligent Systems Techniques for Mobile Robots
- Explore Systems that Modify their Existing I/O, Memory and Rules
- Demonstrate the Features that Qualify a Robot as a Smart Machine.

Collaborators: Bruce Brendle, U.S. Army TARDEC; Ka C Cheok, Oakland University

(iii) Embedded Simulation

- Develop an Integrated Video and Terrain Database System.
- Locate Objects in Real-Time Video and Relate them to Virtual Objects in a Database.
- Register Real-Time Video with Terrain Database

Collaborators: Paul Bounker, U.S. Army TARDEC; Yi Lu Murphey, University of Michigan-Dearborn

Coming Soon

- 2002 Call for Workshops
- 2002 Presentation of Collaborative Research Results
- Final Vetronics Research Plan for 2001
- VI Website

POC: Dr. Paul Richardson, Vetronics Institute Team-Leader

phone: 313-593-5560

email: richarpc@umich.edu

web-site: www.engin.umd.umich.edu/vi